Sebuahpelat logam diukur ketebalannya menggunakan mikrometer sekrup dan menunjukkan skala seperti pada gambar berikut. Tugas Oktober 8, 2021 Mei 14, Tentukan bentuk faktorial dari perkalian bilangan asli berikut! a. 18 x 17 x 16 x 15 b. 7 x 6 x 5 / 2 x 1 Tentukan bentuk faktorial dari perkalian bilangan asli berikut!a. 18 x 17 x 16
Istilah faktorial mungkin pertama kali dimunculkan saat kita akan mempelajari materi mengenai prinsip permutasi dan kombinasi. Dalam matematika, faktorial didefinisikan sebagai berikut. Definisi Faktorial Faktorial dari bilangan asli $n$, dinotasikan $n!$ dibaca $n$ faktorial, adalah perkalian semua bilangan bulat positif yang kurang dari atau sama dengan $n$. Secara matematis, ditulis $\begin{aligned} n! & = 1 \times 2 \times 3 \times \cdots \times n-1 \times n \\ & = n \times n-1 \times \cdots \times 3 \times 2 \times 1 \end{aligned}$ Ekspresi faktorial dalam notasi pi hasil kali adalah $n! = \displaystyle \prod_{k=1}^n k.$ Ekspresi faktorial dalam relasi rekurensi adalah $n! = \begin{cases} 1, &~\text{jika}~n = 0 \\ n-1! \times n, &~\text{jika}~n > 0 \end{cases}$ Selanjutnya, didefinisikan bahwa $0! = 1$ dan faktorial dari bilangan negatif tidak terdefinisi tidak memiliki arti. Perhatikan bahwa notasi faktorial menggunakan simbol berupa tanda seru exclamation mark. Konsep faktorial selanjutnya banyak diaplikasikan dalam bidang kombinatorika. Untuk itu, berikut disajikan soal dan pembahasan terkhusus mengenai faktorial yang diharapkan dapat menambah wawasan mengenai materi yang bersangkutan. Soal juga dapat diunduh melalui tautan berikut Download PDF, 171 KB. Poem by Shane Dizzy Sukardy Sekaleng soda menemani saat hujan mulai reda. Kala itu sang pesepeda bagai seorang laskar berkuda, melukiskan jejak dengan hanya sedikit bersabda, mengingat besok adalah hari yang berwarna dan bernada. Bagian Pilihan Ganda Soal Nomor 1 Nilai dari $\dfrac{100! \times 2}{99!}$ adalah $\cdots \cdot$ A. $50$ C. $150$ E. $ B. $100$ D. $200$ Pembahasan Gunakan prinsip faktorial. $\begin{aligned} \dfrac{100! \times 2}{99!} & = \dfrac{100 \times \cancel{99!} \times 2}{\cancel{99!}} \\ & = 100 \times 2 = 200 \end{aligned}$ Jadi, nilai dari $\boxed{\dfrac{100! \times 2}{99!} = 200}$ Jawaban D [collapse] Soal Nomor 2 Hasil dari $\dfrac{11!-10!}{9!}$ adalah $\cdots \cdot$ A. $50$ C. $80$ E. $200$ B. $75$ D. $100$ Pembahasan Dengan menggunakan definisi faktorial dan sifat distributif bilangan, kita akan memperoleh $\begin{aligned} \dfrac{11!-10!}{9!} & = \dfrac{11 \cdot 10!-10!}{9!} \\ & = \dfrac{11-1 \cdot 10!}{9!} \\ & = \dfrac{10 \cdot 10 \cdot \cancel{9!}}{\cancel{9!}} \\ & = 10 \cdot 10 = 100. \end{aligned}$ Jawaban D [collapse] Soal Nomor 3 Hasil dari $\dfrac{15!-14!}{8!-7!}$ adalah $\cdots \cdot$ A. $1$ B. $15 \cdot 13 \cdot 12 \cdot 11 \cdot 10 \cdot 9$ C. $13 \cdot 12 \cdot 11 \cdot 10 \cdot 9 \cdot 8 \cdot 7$ D. $14 \cdot 13 \cdot 12 \cdot 11 \cdot 10 \cdot 9 \cdot 8 \cdot 2$ E. $14 \cdot 13 \cdot 12 \cdot 11 \cdot 10 \cdot 9 \cdot 8 \cdot 7$ Pembahasan Gunakan definisi faktorial dan sifat distributif bilangan. $$\begin{aligned} \dfrac{15!-14!}{8!-7!} & = \dfrac{15 \cdot 14!-14!}{8 \cdot 7!-7!} \\ & = \dfrac{15-1 \cdot 14!}{8-1 \cdot 7!} \\ & = \dfrac{\cancelto{2}{14} \cdot 14!}{\cancel{7} \cdot 7!} \\ & = \dfrac{2 \cdot 14 \cdot 13 \cdot 12 \cdot 11 \cdot 10 \cdot 9 \cdot 8 \cdot \cancel{7!}}{\cancel{7!}} \\ & = 14 \cdot 13 \cdot 12 \cdot 11 \cdot 10 \cdot 9 \cdot 8 \cdot 2 \end{aligned}$$Jawaban D [collapse] Soal Nomor 4 Nilai dari $\dfrac{32^{9!}}{8^{8!}} \div 16^{9!} \cdot 64^{8!} = \cdots \cdot$ A. $0$ C. $2$ E. $8$ B. $1$ D. $4$ Pembahasan Perhatikan bahwa semua basis pada ekspresi di atas merupakan hasil perpangkatan dari $2$. Jadi, kita ubah semuanya menjadi berbasis $2$, lalu sederhanakan menggunakan sifat-sifat eksponen. $$\begin{aligned} \dfrac{32^{9!}}{8^{8!}} \div 16^{9!} \cdot 64^{8!} & = \dfrac{2^5^{9!}}{2^3^{8!}} \div 2^4^{9!} \cdot 2^6^{8!} \\ & = 2^{5 \cdot 9! -3 \cdot 8!} \div 2^{4 \cdot 9! + 6 \cdot 8!} \\ & = 2^{5 \cdot 9!-3 \cdot 8!-4 \cdot 9!-6 \cdot 8!} \\ & = 2^{5-49!-3+68!} \\ & = 2^{\color{red}{1 \cdot 9!}-\color{blue}{9 \cdot 8!}} \\ & = 2^{\color{red}{9!}-\color{blue}{9!}} = 2^0 = 1 \end{aligned}$$Jadi, nilai dari $\boxed{\dfrac{32^{9!}}{8^{8!}} \div 16^{9!} \cdot 64^{8!} = 1}$ Jawaban B [collapse] Soal Nomor 5 Hasil dari $\dfrac{n-1!}{n!} = \cdots \cdot$ A. $\dfrac{1}{n}$ D. $n-1$ B. $n^2-n$ E. $n$ C. $n-2$ Pembahasan Berdasarkan definisi faktorial, diperoleh $\begin{aligned} \dfrac{n-1!}{n!} & = \dfrac{\cancel{n-1!}}{n \cdot \cancel{n-1!}} \\ & = \dfrac{1}{n} \end{aligned}$ Jadi, hasil dari $\boxed{\dfrac{n-1!}{n!} = \dfrac{1}{n}}$ Jawaban A [collapse] Soal Nomor 6 Nilai $n$ yang memenuhi persamaan $n+3! = 10n+2!$ adalah $\cdots \cdot$ A. $5$ C. $8$ E. $11$ B. $7$ D. $9$ Pembahasan Berdasarkan definisi faktorial, diperoleh $\begin{aligned} n+3! & = 10n+2! \\ n+3 \times \cancel{n+2!} & = 10\cancel{n+2!} \\ n+3 & = 10 \\ n & = 7 \end{aligned}$ Jadi, nilai $n$ yang memenuhi persamaan tersebut adalah $\boxed{7}$ Jawaban B [collapse] Soal Nomor 7 Jika $\dfrac{n!}{n-2!} = 20$, maka nilai dari $n^2+5n-3$ adalah $\cdots \cdot$ A. $23$ C. $42$ E. $52$ B. $32$ D. $47$ Pembahasan Pertama, kita akan mencari nilai $n$ dengan menyelesaikan persamaan $\dfrac{n!}{n-2!} = 20$ menggunakan definisi faktorial. $\begin{aligned} \dfrac{n \times n-1 \times \cancel{n-2!}}{\cancel{n-2!}} & = 20 \\ nn-1 & = 20 \\ n^2-n-20 & = 0 \\ n-5n+4 & = 20 \end{aligned}$ Diperoleh $n = 5$ atau $n = -4$. Karena $n = -4$ mengakibatkan $n!$ tidak terdefinisi, maka kita ambil $n = 5$. Jadi, nilai dari $\boxed{n^2+5n-3 = 5^2+55-3 = 47}$ Jawaban D [collapse] Soal Nomor 8 Jika $\dfrac{n+1!}{n-2!} = \dfrac{n!}{n-4!}$, maka pernyataan berikut yang tepat mengenai nilai $n$ adalah $\cdots \cdot$ A. $n$ merupakan bilangan prima B. $n$ merupakan bilangan dua-digit C. $n$ merupakan bilangan genap D. $n$ merupakan bilangan kelipatan $3$ E. $n$ memiliki lebih dari $2$ faktor Pembahasan Berdasarkan definisi faktorial, diperoleh $$\begin{aligned} \dfrac{n+1!}{n-2!} & = \dfrac{n!}{n-4!} \\ \dfrac{n+1 \times \bcancel{n!}}{n-2 \times n-3 \times \cancel{n-4!}} & = \dfrac{\bcancel{n!}}{\cancel{n-4!}} \\ \dfrac{n+1}{n-2n-3} & = 1 \\ n+1 & = n-2n-3 \\ n+1 & = n^2-5n+6 \\ n^2-6n+5 & = 0 \\ n-5n-1 & = 0 \end{aligned}$$Diperoleh $n=5$ atau $n=1$. Karena $n=1$ mengakibatkan ekspresi $n-2!$ tidak terdefinisi, maka kita ambil $n = 5$. Pernyataan yang benar adalah $n=5$ merupakan bilangan prima. Jawaban A [collapse] Soal Nomor 9 Bentuk sederhana dari $\dfrac{1}{2!} + \dfrac{2}{3!} + \dfrac{3}{4!} + \dfrac{4}{5!} + \cdots + \dfrac{99}{100!}$ adalah $\cdots \cdot$ A. $1-\dfrac{1}{100!}$ D. $1+\dfrac{1}{50!}$ B. $1+\dfrac{1}{100!}$ E. $1-\dfrac{1}{99!}$ C. $1-\dfrac{1}{50!}$ Pembahasan Perhatikan bahwa $\begin{aligned} \dfrac{k}{k+1!} & = \dfrac{k+1}{k+1!}-\dfrac{1}{k+1!} \\ & = \dfrac{\cancel{k+1}}{\cancel{k+1} \times k!} -\dfrac{1}{k+1!} \\ & = \dfrac{1}{k!}-\dfrac{1}{k+1!} \end{aligned}$ Dengan demikian, diperoleh $$\begin{aligned} & \dfrac{1}{2!} + \dfrac{2}{3!} + \dfrac{3}{4!} + \dfrac{4}{5!} + \cdots + \dfrac{99}{100!} \\ & = \left\dfrac{1}{1!}-\cancel{\dfrac{1}{2!}}\right + \left\cancel{\dfrac{1}{2!}}-\cancel{\dfrac{1}{3!}}\right+\cdots+\left\cancel{\dfrac{1}{99!}}-\dfrac{1}{100!}\right \\ & = 1-\dfrac{1}{100!} \end{aligned}$$Catatan Prinsip pencoretan kanselasi sehingga suku-sukunya saling menghilangkan seperti di atas dikenal dengan istilah Prinsip Teleskopik. Jadi, bentuk sederhananya adalah $\boxed{1-\dfrac{1}{100!}}$ Jawaban A [collapse] Soal Nomor 10 Misalkan $N = 1!^3 + 2!^3 + 3!^3$ $+ \cdots + 2018!^3$. Jika tiga digit terakhir dari $N$ adalah $\overline{abc}$, maka nilai $a+b+c=\cdots \cdot$ A. $9$ C. $11$ E. $13$ B. $10$ D. $12$ Pembahasan Tiga digit terakhir dari $N$ sama dengan tiga digit terakhir dari $Q = 1!^3+2!^3+3!^3+4!^3.$ Ini terjadi karena untuk $m > 4$, berlaku $10~~m!$, artinya $m!$ habis dibagi $10$. Akibatnya, $1000~~m!^3$. Dengan kata lain, tiga digit terakhir dari $5!^3, 6!^3$, dan seterusnya adalah $000$. Sekarang, perhatikan bahwa $\begin{aligned} Q & = 1!^3+2!^3+3!^3+4!^3 \\ & = 1^3 + 2^3 + 6^3 + 24^3 \\ & = 1 + 8 + 216 + = 14.\color{red}{049} \end{aligned}$ Jadi, tiga digit terakhir dari $N$ adalah $\overline{abc} = 049$ sehingga $\boxed{a+b+c=0+4+9=13}$ Jawaban E [collapse] Soal Nomor 11 Sisa pembagian $1 \cdot 1! + 2 \cdot 2! + 3 \cdot 3!$ $+ \cdots + 99 \cdot 99! + 100 \cdot 100!$ oleh $101$ adalah $\cdots \cdot$ A. $0$ C. $21$ E. $100$ B. $11$ D. $99$ Pembahasan Misalkan $$\begin{aligned} x & = 1 \cdot 1! + 2 \cdot 2! + 3 \cdot 3! + \cdots + 99 \cdot 99! + 100 \cdot 100! \\ y & = 2 \cdot 1! + 3 \cdot 2! + 4 \cdot 3! + \cdots + 100 \cdot 99! + 101 \cdot 100! \end{aligned}$$Dengan demikian, kita peroleh $$\begin{aligned} \color{red}{y}-x & = 2-1 \cdot 1! + 3-2 \cdot 2! + 4-3 \cdot 3! + \cdots + 100-99 \cdot 99! + 101-100 \cdot 100! \\ & = 1 \cdot 1! + 1 \cdot 2! + 1 \cdot 3! + \cdots + 1 \cdot 99! + 1 \cdot 100! \\ & = 1! + 2! + 3! + \cdots + 99! + 100! \end{aligned}$$Perhatikan bahwa $y$ juga dapat ditulis dalam ekspresi lain, yaitu $y = 2! + 3! + 4! + \cdots + 100! + 101!$ Sekarang, substitusi ekspresi $y$ ini ke persamaan sebelumnya mengganti nilai $y$ yang diberi warna merah di atas. $$\begin{aligned} \color{red}{y}-x & = 1!+2!+3!+\cdots+99!+100! \\ 2! + 3! + 4! + \cdots + 100!+101!-x & = 1!+2!+3!+\cdots+99!+100! \\ x & = \cancel{2!+3!+4!+\cdots+100!}+101!-1!+\cancel{2!+3!+\cdots+99!+100!} \\ x & = 101!-1 \end{aligned}$$Perhatikan bahwa $101!$ jelas habis dibagi $101$ karena memuat faktor $101$. Ketika dikurangi $\color{blue}{1}$, maka sisa pembagiannya menjadi $101-\color{blue}{1} = 100$. Jadi, sisa pembagian $1 \cdot 1! + 2 \cdot 2! + 3 \cdot 3!$ $+ \cdots + 99 \cdot 99! + 100 \cdot 100!$ oleh $101$ adalah $\boxed{100}$ Jawaban E [collapse] Soal Nomor 12 Sisa hasil bagi $1^2 \cdot 2! + 2^2 \cdot 3! + 3^2 \cdot 4! + \cdots + \cdot oleh $ adalah $\cdots \cdot$ A. $1$ D. $7$ B. $2$ E. $ C. $5$ Pembahasan Misalkan $$P = 1^2 \cdot 2! + 2^2 \cdot 3! + 3^2 \cdot 4! + \cdots + \cdot demikian, diperoleh $$\begin{aligned} P & = \displaystyle \sum_{k=1}^{ k^2k+1! \\ & = \sum_{k=1}^{ [k+2^2-4k+1]k+1! \\ & = \sum_{k=1}^{ k+2^2k+1!-\sum_{k=1}^{ 4k+1k+1! \\ & = \sum_{k=1}^{ k+2k+2!-4\sum_{k=1}^{ k+1k+1! \\ & = \sum_{k=3}^{ k \cdot k!-4\sum_{k=2}^{ k \cdot k! \\ & = \left\sum_{k=1}^{ k \cdot k!-1 \cdot 1!-2\cdot2!\right -4\left\sum_{k=1}^{ k \cdot k!-1\cdot 1!\right. \end{aligned}$$Dengan menggunakan fakta bahwa $\displaystyle \sum_{k=1}^n k \cdot k! = n+1!-1$ dapat dibuktikan dengan menggunakan induksi, didapat $$\begin{aligned} P & = \\ & = \cdot + 2. \end{aligned}$$Dari bentuk terakhir, dapat dengan mudah diketahui bahwa sisa hasil bagi $P$ oleh $ adalah $\boxed{2}.$ Hal ini terjadi karena $ dan $4 \cdot keduanya memuat faktor $ sehingga $ membagi keduanya. Jawaban B [collapse] Soal Nomor 13 Jika $\dfrac{120!+1!-5!!!}{120!-1!} = \left[a!!\right]^b$, maka nilai dari $a-b! = \cdots \cdot$ A. $1$ C. $3$ E. $6$ B. $2$ D. $5$ Pembahasan Gunakan sifat faktorial berikut. $\boxed{n! = nn-1!}$ Perhatikan bahwa $5! = 120$. Kita peroleh $$\begin{aligned} \dfrac{120!+1!-120!!}{120!-1!} & = \left[a!!\right]^b \\ \dfrac{120!+1120!\cancel{120!-1!}-120!\cancel{120!-1!}}{\cancel{120!-1!}} & = \left[a!!\right]^b \\ 120!+1!120!-120! & = \left[a!!\right]^b \\ 120!120! + 1-1 & = \left[a!!\right]^b \\ 120!120! & = \left[a!!\right]^b \\ 120!^2 = 5!!^2 & = \left[a!!\right]^b \end{aligned}$$Diperoleh $a = 5$ dan $b = 2$ sehingga $\boxed{a-b! = 5-2! = 3! = 6}$ Jawaban E [collapse] Soal Nomor 14 Diketahui $P = 10 \cdot 9!^{\frac12}$, $Q = 9 \cdot 10!^{\frac12}$, dan $R = 11!^{\frac12}$ dengan $n! = 1 \cdot 2 \cdot 3 \cdots n-1n$. Urutan yang benar dari ketiga bilangan di atas adalah $\cdots \cdot$ A. $R R^2 > P^2$, mengimplikasikan bahwa $\boxed{P b$. Misalkan $\begin{aligned}N & = \dfrac{a!}{b!} \\ & = aa-1a-2\cdotsb+1. \end{aligned}$ Perhatikan bahwa $N$ merupakan hasil kali dari $a-b+1+1 = a-b$ bilangan asli berurutan. Andaikan kita pilih $a = 5$ dan $b = 2$, diperoleh $N = \dfrac{5!}{2!} = 5 \times 4 \times 3.$ Bilangan ini merupakan kelipatan $4$, tetapi bukan kelipatan $8$. Jadi, $3$ adalah salah satu nilai $a-b$ yang mungkin. Sekarang, jika $a-b = 4$, maka itu artinya $N$ merupakan hasil kali dari $4$ bilangan asli berurutan, sebut saja $pp+1p+2p+3$. Jika $p$ ganjil, maka $p+1$ dan $p+3$ kelipatan $2$ dan salah satunya pasti merupakan kelipatan $4$ sehingga $N$ habis dibagi $8.$ Jika $p$ genap, maka $p$ dan $p+2$ kelipatan $2$ dan salah satunya pasti merupakan kelipatan $4$ sehingga $N$ habis dibagi $8$. Dengan demikian, dapat ditarik suatu proposisi bahwa perkalian empat bilangan asli berurutan habis dibagi $8.$ Akibatnya, nilai $a-b$ terbesar agar $\dfrac{a!}{b!}$ merupakan bilangan kelipatan $4$, tetapi bukan kelipatan $8$, adalah $\boxed{3}$ [collapse] Soal Nomor 11 Terdapat $a_2, a_3, a_4$, $a_5, a_6$, dan $a_7$ yang memenuhi $\dfrac57 = \dfrac{a_2}{2!} + \dfrac{a_3}{3!}$ $+ \dfrac{a_4}{4!} + \dfrac{a_5}{5!} + \dfrac{a_6}{6!}$ $+ \dfrac{a_7}{7!},$ untuk $0 \leq a_i n$ sehingga nilai $k$ terkecil adalah $n+1.$ Dengan demikian, $n-4$ bilangan bulat berurutan itu dimulai dari bilangan $1+5=6$, yaitu $6 \times 7 \times 8 \times \cdots \times n+1 = n!.$ Bila kita selesaikan persamaan tersebut mencari nilai $n$, kita akan memperoleh $\begin{aligned} \dfrac{n+1!}{5!} & = n! \\ \dfrac{n+1 \times n!}{5!} & = n! \\ n+1 & = 5! \\ n & = 5!-1 = 119. \end{aligned}$ Jadi, nilai $n$ terbesar adalah $119$ dan perhatikan bahwa memang $119!$ bisa ditulis menjadi $6 \times 7 \times 8 \times \cdots \times 120$ hasil kali $115$ bilangan bulat positif berurutan. [collapse] Soal Nomor 18 Tentukan banyak tripel bilangan bulat $a, b, c$ yang memenuhi $a! + b! = c!$. Pembahasan Nilai $a, b, c$ pada persamaan $a! +b! =c!$ dipenuhi oleh $0,0,2, 1,0,2, 0,1,2$, dan $1,1,2.$ Misalkan $c$ adalah bilangan bulat positif yang lebih dari dua, sebutlah $n$ dengan $n > 2.$ Sekarang, ambil $a = b = n -1$, yang merupakan pasangan bilangan terbesar agar bila dijumlahkan dapat mencapai nilai di ruas kanan. Jadi, dapat ditulis $\begin{aligned} & n-1! + n-1! = n! \\ & 2n-1! < nn-1! = n!. \end{aligned}$ Jadi, tidak ada nilai $c$ yang dipenuhi oleh $a$ dan $b$ sehingga persamaan itu benar. Dengan demikian, hanya ada $4$ pasangan bilangan $a, b, c$ yang memenuhi persamaan $a! + b! = c!$. [collapse] Soal Nomor 19 Tentukan hasil dari $$\dfrac{2+3^2}{1!+2!+3!+4!}+\dfrac{3+4^2}{2!+3!+4!+5!}+\cdots + \dfrac{2013+2014^2}{ Pembahasan Pertama, nyatakan penjumlahan tersebut dalam notasi sigma, lalu kita sederhanakan dan terapkan prinsip teleskopik. Bentuk di atas setara dengan ekspresi berikut. $$\begin{aligned} & \displaystyle \sum_{n=1}^{ \dfrac{n+1+n+2^2}{n!+n+1!+n+2!+n+3!} \\ & = \sum_{n=1}^{ \dfrac{n^2+5n+5}{n!1 + n+1 + n+1n+2 + n+1n+2n+3} \\ & = \sum_{n=1}^{ \dfrac{n^2+5n+5}{n!n^3+7n^2+15n+10} \\ & = \sum_{n=1}^{ \dfrac{\cancel{n^2+5n+5}}{n!\cancel{n^2+5n+5}n+2} \\ & = \sum_{n=1}^{ \dfrac{1}{n!n+2} \times \color{red}{\dfrac{n+1}{n+1}} \\ & = \sum_{n=1}^{ \dfrac{n+1}{n+2!} \\ & = \sum_{n=1}^{ \dfrac{n+2-1}{n+2!} \\ & = \sum_{n=1}^{ \dfrac{1}{n+1!}-\dfrac{1}{n+2!} \\ & = \left\dfrac{1}{2!}-\dfrac{1}{3!}\right+\left\dfrac{1}{3!}-\dfrac{1}{4!}\right+\cdots+\left\dfrac{1}{ \\ & = \dfrac{1}{2!}-\dfrac{1}{ \end{aligned}$$Jadi, hasil dari perhitungannya adalah $\boxed{\dfrac{1}{2!}-\dfrac{1}{ [collapse]
Bilangankomposit adalah bilangan asli yang lebih besar dari 1 (satu) yang bukan termasuk bilangan prima. Bilangan komposit juga dapat didefinisikan sebagai faktorisasi dari bilangan bulat. Atau dapat juga diartikan bahwa bilangan komposit adalah merupakan hasil perkalian antara dua bilangan prima atau lebih. Ada juga yang mengartikan bahwa bilangan komposit adalah bilangan cacah selain 1
PembahasanJawaban yang benar untuk pertanyaan tersebut adalah a. 15 × 14 × 13 × 12 × 11 = 10 ! 15 ! ​ dan b. 3 × 2 × 1 10 × 9 × 8 × 7 ​ = 3 ! ⋅ 6 ! 10 ! ​ . Bentuk faktorial n ! didefinisikan n ! = n × n − 1 × n − 2 × ... × 2 × 1 , untuk n ∈ B ilanganasli . Jadi. a. 15 × 14 × 13 × 12 × 11 15 × 14 × 13 × 12 × 11 ​ = = ​ 10 ! 15 × 14 × 13 × 12 × 11 × 10 ! ​ 10 ! 15 ! ​ ​ b. 3 × 2 × 1 10 × 9 × 8 × 7 ​ 3 × 2 × 1 10 × 9 × 8 × 7 ​ ​ = = ​ 3 × 2 × 1 × 6 ! 10 × 9 × 8 × 7 × 6 ! ​ 3 ! ⋅ 6 ! 10 ! ​ ​ Dengan demikian, diperoleh a. 15 × 14 × 13 × 12 × 11 = 10 ! 15 ! ​ dan b. 3 × 2 × 1 10 × 9 × 8 × 7 ​ = 3 ! ⋅ 6 ! 10 ! ​ .Jawaban yang benar untuk pertanyaan tersebut adalah a. dan b. . Bentuk faktorial didefinisikan , untuk . Jadi. a. b. Dengan demikian, diperoleh a. dan b. .
Hasilini dapat diketahui dari pembuktiannya di artikel: Mengapa 0 Faktorial Sama Dengan 1. Faktorial biasa digunakan untuk menghitung banyaknya susunan yang dapat dibentuk dari sekumpulan benda tanpa memperhatikan urutannya. Contoh Soal No. 1. Empat buah lukisan A, B, C dan D akan dipajang berurutan pada sebuah dinding pameran.
Tentukan bentuk faktorial dari perkalian bilangan asli berikut! a. 18 x 17 x 16 x 15 b. 7 x 6 x 5 / 2 x 1 - Mas Dayat Tentukan bentuk faktorial dari perkalian bilangan asli berikut! a. 12 x 11 x 10 x 9 x 8 b. 10 x 9 x 8 x 7 / 3 x 2 x 1 - Mas Dayat Soal 5. Tentukan bentuk faktorial dari perkalian bilangan asli heribut a. 12 xx11 xx10 xx9xx8 b Bentuk faktorial dari perkalian bilangan asli 8 x 7 x 6 x 5 adalah - Mas Dayat MeetTheMath nyatakan dalam notasi faktorial 12x11x10x9 - Bentuk faktorial dari perkalian bilangan asli 8 x 7 x 6 x 5 adalah - Mas Dayat 20+ Contoh Soal Faktorial dan Jawaban Soal 5. Tentukan bentuk faktorial dari perkalian bilangan asli heribut a. 12 xx11 xx10 xx9xx8 b Blog Kita kita Februari 2015 20+ Contoh Soal Faktorial dan Jawaban Blog Kita kita Februari 2015 20+ Contoh Soal Faktorial dan Jawaban Notasi Faktorial Adalah Nilai Faktorial 3 + 4 Adalah Faktorial - Cara Menyatakan Notasi Faktorial Cara Menghitung Nilai Faktorial - YouTube 20+ Contoh Soal Faktorial dan Jawaban Bentuk dari 15×14×13×12×11 jika dinyatakan dalam notasi faktorial BELAJAR MATEMATIKA SMK BERSAMA KANG WAWAN MURI FAKTORIAL Nilai Faktorial Dari 4 Adalah Tentukan hasil dari faktorial berikut! a. 9!/9 – 4! b. 12!/15 – 6! - Mas Dayat 20+ Contoh Soal Faktorial dan Jawaban Cara Mencari Nilai Faktorial dan Contoh Soalnya 20+ Contoh Soal Faktorial dan Jawaban Tentukan hasil dari faktorial berikut! a. 9!/9 – 4! b. 12!/15 – 6! - Mas Dayat Aturan Perkalian, Aturan Penjumlahan, dan Faktorial ~ Konsep Matematika KoMa Notasi Faktorial Adalah BELAJAR MATEMATIKA SMK BERSAMA KANG WAWAN MURI FAKTORIAL Definisi dan Notasi Faktorial Materi, Soal & Pembahasan - YouTube 20+ Contoh Soal Faktorial dan Jawaban Contoh Soal Notasi Faktorial – Dengan Tentukan bentuk faktorial dari perkalian berikut. A. 6×5×4×3×2×1 Notasi Faktorial Pada Kaidah Pencacahan Matematika Bersama DR Taufiq H - YouTube Soal 7^2xx2^-3xx5^3-5^2xx7^1xx2^2/7^2xx2^-1xx5^2 20+ Contoh Soal Faktorial dan Jawaban Contoh Soal Notasi Faktorial – Dengan Konsep Permutasi Dan Kombinasi Contoh Soal Faktorial 20+ Contoh Soal Faktorial dan Jawaban ZenBot Contoh Soal Notasi Faktorial – Dengan FAKTORIAL. - ppt download Contoh Soal Faktorial Suatu Bilangan Asli PDF Faktorial - Cara Menyatakan Notasi Faktorial Cara Menghitung Nilai Faktorial - YouTube Notasi Faktorial 5 + 2 Adalah Contoh Soal Notasi Faktorial – Dengan Contoh Soal Faktorial Soal Selesaikan perkalian bilangan berpangkat bulat 5p^5xx3p^-5 20+ Contoh Soal Faktorial dan Jawaban BELAJAR MATEMATIKA SMK BERSAMA KANG WAWAN MURI FAKTORIAL Contoh Soal Notasi Faktorial – Dengan 20+ Contoh Soal Faktorial dan Jawaban Cara menentukan nilai n pada bentuk faktorial - YouTube Faktorial Lembaga Pelatihan Olimpiade Sains Faktorial Notasi faktorial banyak digunakan dalam kombinatorik. … Permutasi siklik adalah ketika susunan objek dilakukan secara siklik, atau memutar. - [PDF Document] Contoh Soal Notasi Faktorial – Dengan tolong dong dinyatakan dalam bentuk Faktorial! - BELAJAR MATEMATIKA SMK BERSAMA KANG WAWAN MURI FAKTORIAL Nyatakan ke dalam notasi faktorial 20+ Contoh Soal Faktorial dan Jawaban Soal Berapakah jumlah tiga digit pertama dari 2^2006xx5^2xx102? tentukan hasil perkalian pecahan pecahan berikut dengan cara nya​ - Contoh Soal Notasi Faktorial – Dengan Blog Kita kita Februari 2015 Faktorial Matematika Beserta Contoh Soal dan Jawaban - PINTERPandai Matematika, Tulisan, Pengetahuan Notasi Faktorial n ! = nn - 1 n -2 Definisi 0! = 1 - ppt download Persamaan Faktorial - Cara Menentukan Nilai n dari Persamaan Faktorial - YouTube Bab II Peluang PDF Contoh Soal Notasi Faktorial – Dengan 18++ Contoh Soal Peluang Notasi Faktorial - Kumpulan Contoh Soal KONSEP DASAR PROBABILITAS - ppt download Soal dan Pembahasan - Faktorial - Mathcyber1997 Soal 25 Sebuah situs try out meminta penggunanya membuat sandi yang hanya memuat angka berbeda. Hasil Dari 4 Faktorial Adalah 18++ Contoh Soal Peluang Notasi Faktorial - Kumpulan Contoh Soal Contoh Soal Notasi Faktorial – Dengan Bentuk faktorial dari perkalian bilangan asli Faktorial suatu bilangan asli - YouTube hitung nilai notasi faktorial 4! 5! per 2! 3!​ - nyatakan dalam notasi faktorial! ​ - Soal Nilai dari 3xx2^-11+5xx2^-11/4^-6=dots ATURAN PENCACAHAN DAN PERMUTASI. Tujuan Pembelajaran Kaidah Pencacahan Permutasi - Materi Lengkap Matematika Contoh Soal Notasi Faktorial – Dengan Soal Bentuk faktorial dari perkalian bilangan asli 8xx7xx6xx5 adalah Kaidah Pencacahan Permutasi - Materi Lengkap Matematika Soal dan Pembahasan - Faktorial - Mathcyber1997 Konsep Permutasi Dan Kombinasi Bentuk faktorial dari perkalian bilangan asli Faktorial suatu bilangan asli - YouTube notasi sigma nyatakan dalam notasi faktorial​ - LKS PERMUTASI dan KOMBINASI - PDF Download Gratis Lembaga Pelatihan Olimpiade Sains Faktorial Notasi faktorial banyak digunakan dalam kombinatorik. … Permutasi siklik adalah ketika susunan objek dilakukan secara siklik, atau memutar. - [PDF Document] PELUANG. Kegiatan Belajar 1 Kaidah Pencacahan, Permutasi dan kombinasi Contoh soal faktorial dan penyelesaiannya – Materi Kelas 12 Jurusan IPS Yang bisa Tolong jawab ya,, - 1629771027809_PERTEMUAN-II-STATMAT PDF 20+ Contoh Soal Faktorial dan Jawaban Soal 12 Bentuk faktorial dari perkalian bilangan asl 9xx8xx7xx6 adalah…. PDF MATERI PELUANG Rifal Ahmad - ASSALAMUALAIKUM WR WB By Weni kusumaningrum a 410090260
jawaban 70.506. Penjelasan dengan langkah-langkah: 567x123 = 69.741 + 765 = 70.506. Jadikan jawaban terbaik jangan lupa follow atau like jika suka terimakasih
Bentuk faktorial dari perkalian bilangan asli 5 x 4 x 3 /2 x 1 adalah …. A. 5!/2! B. 4!/2! x 3! C. 4!/2! x 2! D. 5!/2! x 3! E. 5!/2! x 2!PembahasanKita hitung seperti berikutJawaban E-Jangan lupa komentar & sarannyaEmail nanangnurulhidayat
Bagaimanabentuk perkalian dari 2+2+2+2+2? 5×2 atau 2×5, bukankah hasilnya akan sama saja? Tetapi kenapa di sekolah menggunakan yang 5×2? Hastagah Pertanyaan ini mengingatkan saya sama guru SD saya ketika saya pertama kali belajar perkalian dan cara menulis operasinya. Kira-kira begini: Apakah 2+2+2 ditulis 2×3 atau 3×2?
1epIi. 352 295 419 477 27 434 201 6 481
tentukan bentuk faktorial dari perkalian bilangan asli berikut